
Automatic Mediation Of 

Privacy-sensitive

Resource Access In 

Smartphone Applications

Ben Livshits and Jaeyeon Jung

Microsoft Research



PERMISSIONS IN 
MOBILE APPS

2



Permissions Flavors

3

installation-time 
permissions

runtime 
permissions

Permissions

Allow access 
to GPS location?



Examples of Permissions in Different 

Mobile Operating Systems

4

installation-time 
permissions

runtime 
permissions



General Guidelines

5

Best Practices for Mobile Application Developers
Center for Democracy & Technology



Guarding Location Access

• Focus on 3 representative applications in the 
Windows Phone store

6

App
Resource
Accesses APIs used DLLs using location

AroundMe 2 TryStart, getPosition AroundMe.dll

Burger King 5 Start, getPosition BurgerKing.dll,
GART.dll

LumiaClock 2 Start, getPosition SOMAWP7.dll

%z



AroundMe

7

public static bool AroundMe.App.CheckOptin() {
if (((Option)Enum.Parse(typeof(Option),Config.GetSetting
(SettingConstants.UseMyLocation),true)) == Option.Yes
return GetCurrentCoordinates();
}
if (MessageBox.Show("This app needs ...",

"Use location data?", MessageBoxButton.OKCancel
== MessageBoxResult.OK) 

{
Config.UpdateSetting(new KeyValuePair<string,string
(SettingConstants.UseMyLocation,Option.Yes.ToString

return GetCurrentCoordinates();
}
...
}

check

prompt

save

access



Burger King

8

public BurgerKing.View.MapPage() {
this.InitializeComponent();
base.DataContext = new MapViewModel();
this.BuildApplicationBar();
if (AppSettings.Current.UseLocationService){
this.watcher = new GeoCoordinateWatcher();
}
..
}

protected virtual void GART.Controls.ARDisplay.
OnLocationEnabledChanged(

DependencyPropertyChangedEventArgs e)
{
if (this.servicesRunning) {
if (this.LocationEnabled) {
this.StartLocation();

…

application code

library code



LumiaClock

9

public SomaAd()
{
...
this._locationUseOK = true;
...
if (this._locationUseOK) {
this.watcher = new GeoCoordinateWatcher
(GeoPositionAccuracy.Default);
this.watcher.MovementThreshold = 20.0;
this.watcher.StatusChanged += 
new EventHandler

<GeoPositionStatusChangedEventArgs>(
this.watcher_StatusChanged);

this.watcher.Start();
}
}

library:
just do it!



Where Does that Leave Us?

• Properly protecting 
location access is 
challenging

• Location access is 
common

• Some location-related code 
is in the app

• A lot of location access in 
third-party libraries

• Location choices are 
sometimes ignored

• Third-party libraries such 
as ad libraries sometimes 
expose flags for enabling 
location access but those 
are frequently ignored by 
developers

10



• Study how existing 
applications 
implement resource 
access prompts on a 
set of Windows Phone 
applications

Contributions



• Formulate a problem of 
valid prompt placement 
in graph-theoretic terms

• Propose a static analysis 
algorithm for correct 
resource access prompt 
placement

Static analysis



13

• We evaluate our approach to both 
locating missing prompts and 
placing them when they are missing 
on 100 apps

• Overall, our two-prong strategy of 
dominator-based and backward 
placement succeeds in about 95%
of all unique cases

• Our analyses run in seconds, 
making it possible to run them as 
part of the app submission process

Evaluation



ANALYSIS APPROACH 

14



In This Paper…

• We focus on a completely 
automatic way to insert 
missing prompts

• Our approach is static: we 
want to be able to check 
for missing prompts and 
insert compensating code 
even if we cannot hit it at 
through runtime testing

• Graph-theoretic approach
• Represent the application 

statically as a graph
• An inter-procedural version of 

control flow graph (CFG)
• Reason about prompt 

placement in graph-theoretic 
terms

• Not information flow
• A lot of work on finding 

undesirable information flows
• We reason about control flow 

not data flow

15



Challenges

1. Avoiding double-prompts

2. Sticky prompts

3. Avoiding weaker prompts

4. Minimizing prompting

5. Avoiding prompts in 
background tasks

6. Avoiding prompts in 
libraries

if(P) l1 = getLocation();

l2 = getLocation();

16

flag = true;

if(P){

prompt();

flag = true;

l1 = getLocation();

}

if(!flag){

prompt();

l2 = getLocation();

}

if(P){

prompt();

l1 = getLocation();

l2 = getLocation();

}else{

prompt();

l2 = getLocation();

}



Challenges
1. Avoiding double-prompts

2. Sticky prompts

3. Avoiding weaker prompts

4. Minimizing prompting

5. Avoiding prompts in 
background tasks

6. Avoiding prompts in 
libraries

17

if (MessageBox.Show(

"This app needs to know your location

in order to find locations

around you, can it use your location data?

note: you can change the settings later

through the settings menu",

"Use location data? ", 1) == 1)

{

Config.UpdateSetting(

new KeyValuePair<string, string>(

SettingConstants.UseMyLocation,

Option.Yes.ToString()));

return

GetCurrentCoordinates();

}



Challenges
1. Avoiding double-prompts

2. Sticky prompts

3. Avoiding weaker prompts

4. Minimizing prompting

5. Avoiding prompts in 
background tasks

6. Avoiding prompts in 
libraries

18

3rd party.dll



Valid Placement

19



Intuition for Placement

1. Start with a resource access

2. “Move” the prompts up until we 
are outside of background tasks 

• Downside: 
• possible to move these prompts too 

far (to the beginning of the app in 
the most extreme case)

• This would violate the frugal
requirement. 

• This gives rise to a notion of a 
prompt being needed at a particular 
point, for which we use the term 
anticipating

20

5 getLocation()



Dominator-Based Approach

21

1

Not frugal!

5

5 getLocation()



Backward Placement

22

5 5

2

Slower

4

getLocation()



Analysis Steps

23

1. For every resource access type and every node n, pre-
compute r-anticipated value Ar(n)

2. Merge values by meeting them in the semi-lattice of resource 
types 

A(n) = ᴧ Ar(n)

3. For every 



EVALUATION

24



Input Statistics

apps analyzed
app size

100
7.3MB

processed methods 352,816 3.5K on average

25

background/library methods 26,033 7%

library methods 25,898 7%

nodes 1,333,056

anticipating 171,253 12%

accesses 227 2 per app

accesses in background/library methods 78 1/3rd



Benchmarks

26

• Took 100 WP 7 apps

• To make this meaningful, 
chose apps with LOCATION
and NETWORKING caps

• An average app is 7.3 MB 
of code

• Uses third-party ad libraries



Prompt Placement Success

Succeeded
91%

Failed
9%

Total

27

Succeeded
95%

Failed
5%

Unique



Dominator-Based vs. Backward 

Dominator
3%

Naïve
70%

Backward
27%

• When dominator-based 
placement succeeds, it is 
usually immediate

• Backward placement is 
helpful for cases where 
dominator-based 
placement fails

• However, some of these 
cases are still too hard, 
leading to 7 unique failures

28



Timing

1,779

18,152 15,103

158 123

942

0

1,366

0.01

0.1

1

10

100

1000

10000

100000
ap

p
 lo

ad
in

g

ca
ll 

gr
ap

h
 c

o
n

st
ru

ct
io

n

p
la

ce
m

en
t 

gr
ap

h
co

n
st

ru
ct

io
n

an
ti

ci
p

at
in

g 
co

m
p

u
ta

ti
o

n

fi
n

d
in

g 
m

is
si

n
g 

p
ro

m
p

ts

p
ro

m
p

t 
in

se
rt

io
n

, p
er

 a
p

p

d
o

m
in

at
o

r-
b

as
ed

, p
er

ac
ce

ss

b
ac

kw
ar

d
, p

er
 a

cc
es

s

29



Manual Examination

• Picked 10 apps with 27 
resource accesses

• Manually exercised as much 
functionality as possible 

• Verification includes running 
these apps in an emulator to 
collect network packets and 
API calls 

• False negatives: resource 
access we think is protected 
whereas in fact at runtime it 
has no preceding prompts

• Out of 27 accesses our 
analysis reports 10 as 
unprotected

• No false negatives observed: 
analysis correctly identifies
them as unprotected and 
finds proper prompt 
placements

30



False Positives

• False positives: analysis 
classifies a resource access as 
unprotected whereas it is 
properly protected at runtime 

• 11 out of 21 accesses found 
as unprotected turn out to be 
false positives

• Reasons include:
• Not recognizing sticky prompts

• Custom consent dialogs

• Async calls and XAML

31

• Our analysis errs on the safe side, 
introducing false positives and not 
false negatives

• False positives may lead to double-
prompting

• Inserted prompts are sticky, so at 
most one extra runtime prompt 
per app 

• Easy to spot and suppress by app 
store maintainers

• Interesting future research



Conclusions
• Explored the problem of missing 

prompts that should guard 
sensitive resource accesses

• Graph-theoretic algorithm for 
placing prompts

• Approach that balances 
execution speed and few 
prompts inserted via dominator-
based placement with a 
comprehensive nature of a more 
exhaustive backward analysis

• Overall, our two-prong 
strategy of dominator-based 
and backward placement 
succeeds in
• about 95% of all unique cases 

• highly scalable: analysis usually 
takes under a second on average

• Suggests that fully-automatic 
prompt placement is viable

32


