Automatic Mediation Of
Privacy-sensitive
Resource Access In
Smartphone Applications

Ben Livshits and Jaeyeon Jung

Microsoft Research

PERMISSIONS IN
MOBILE APPS

Aﬁ)w access
to GPS location?

ANNWES

installation-time runtime
permissions permissions

PERMISSIONS

This

app can access the following on your tablet:

Your location
fine (GPS) location

Your personal information
read contact data, write contact data

Network communication
full Internet access

Your accounts
actas an account authenticator, manage th
the authentication credentials of an accour

Storage
modify/delete USBE storage contents

System tools
prevent tablet from sleeping, write sync set

Hide

Network communication
receive data from Internet

Hardware controls
control vibrator

Your accounts
discover known accounts

System tools
read sync settings

installation-time
permissions

Allow IMDDb to access
and use your location?

Sharing this information allows us to find
theaters and showtimes near you. We won't
share this information.

i ;loyvr

DC i

r needs location

/r” Would Like to Use
ur Current Location

allows access to location
ation in photos and videos.

J

)

Allow

BERE

runtime
)lermissions

General Guidelines

Precise geo-location information is increasingly

considered sensitive information. You should only collect and transmit such information when you have your

users’ clear, opt-in permission.

While most platforms do require express permission for an app to access
location information, if you are using that data in unexpected ways or are

transmitting that information to third-parties, make sure you get your own

e e permission from the user before doing s0.2

In your app’s privacy policy, specify how you collect, use and share location
data. You should also provide disclosure for: (1) the level of location data
collection such as precise or fine, zip level, zip+4, or coarse; (2) whether
the data is being used with a unique mobile identifier; and (3) the period
of time that the user's location data is linked with the user’s identifier.

Don't Allow

Best Practices for Mobile Application Developers
Center for Democracy & Technology

Guarding Location Access

- Focus on 3 representative applications in the
Windows Phone store

AroundMe

Burger King

HB@E

LumiaClock

AroundlVie

public static bool AroundMe.App.CheckOptin() {

i ?
. - °
Use location data? if (((Option)Enum.Parse(typeof(Option),fonfig
This app needs to know your location in . .
order to find locations around you, can it (SettlngconStantS y UseMyLocatlon)) t Pue)) CFI%CQF
use your location data? return GetCurrentCoordinates();
note: you can change the settings later } -

through the settings menu

if (MessageBox.Show("This app needs ...]",

"Use location data?", MessageBoxBibte

== MessageBoxResult.OK)

{ Z
Config.UpdateSetting(new KeyValuePair<|string,

(SettingConstants.UseMyLocation,Optionf:¥a¥e Tc

return GetCurrentCoordinates();
—access

}

N
Burger King

public BurgerKing.View.MapPage() |{

privacy policy this.InitializeComponent();
This application uses your location to show base.DataContext = new Ma pViech del() s
iton .the map. No |r1forrnat|9|1 about your this. BuildApplicationBar'() ;
location will be stored, published or sent
to any service. Do you wish to give it if (AppSettlngs.Cur‘rent.UseLoca?_Qn%Erpﬁcc én COd a)
permission to use your location? this.watcher = new GeoCoordinaflelWa er‘(3
—

protected virtual void GART.Corrtyols.ARDisplay.
OnLocationEnabledChanged(

DependencyPropertyChangedEventArgs e)
{

if (this.servicesRunning) {
if (this.LocationEnabled) {
this.StartLocation();

library code

LumiaClock

Quote and apply. Guaranteed lowest price! pu bl i C SomaAd () -

{
this. locationUseOK = true;

if (this. locationUseOK) {

this.watcher = new GeoCoordingteWatcher
(GeoPositionAccuracy.Default)l; |libra ry:

this.watcher.MovementThreshold—=, 20.0;

this.watcher.StatusChanged += | JUSt do it!
new EventHandler
<GeoPositionStatusChanged

entArgs>(
this.watcher_StatusChanged);

this.watcher.Start();

¥
¥

Where Does that Leave Us?

- Properly protecting - Location choices are
location access is sometimes ignored
challenging

 Third-party libraries such

- Location access is as ad libraries sometimes
common expose flags for enabling
- Some location-related code | location access but those
is in the app are frequently ignored by
- A lot of location access in developers

third-party libraries

e
Contributions

- Study how existing
applications
implement resource
access prompts on a
set of Windows Phone
applications

Static analysis

- Formulate a problem of
valid prompt placement
in graph-theoretic terms

- Propose a static analysis
algorithm for correct
resource access prompt
placement

Evaluation

- We evaluate our approach to both
locating missing prompts and
placing them when they are missing
on 100 apps

 Overall, our two-prong strategy of
dominator-based and backward
placement succeeds in about 95%
of all unigue cases

« Our analyses run in seconds,
making it possible to run them as
part of the app submission process

ANALYSIS APPROACH

In This Paper...

- We focus on a completely - Graph-theoretic approach
aqto_matic way to insert - Represent the application
missing prompts statically as a graph

« An inter-procedural version of

0 i . control flow graph (CFG)
ur approach Is static: we . Reason about prompt

want to .be able to check placement in graph-theoretic
for missing prompts and terms

insert compensating code
even if we cannot hit it at

through runtime testing - Not information flow

A lot of work on finding
undesirable information flows

- We reason about control flow
not data flow

Challenges

1. Avoiding double-prompts if(P) 11 = getLocation();
2. Sticky prompts 12 = getLocation() ;
3. Avoiding weaker prompts
4. Minimizing prompting if (P) {
5. Avoiding prompts in prompt () ;
11 = getLocation() ;
background tasks 12 = getLocation () r
6. Avoiding prompts in }else{

prompt () ;
12 = getLocation() ;

}

IZz—= gectLnocacIoIir\y,

}

libraries

Challenges

1. Avoiding double-prompts
2. Sticky prompts
3 Avokﬂng if (MessageBox.Show (
S "This app needs to know your location
4. Minimizil in order to find locations
5 Avokﬁng around you, can it use your location data?
' note: you can change the settings later
backgrou through the settings menu",
5 Avokﬂng "Use location data? ", 1) == 1)
o : {
libraries Config.UpdateSetting (

new KeyValuePair<string, string>(
SettingConstants.UseMyLocation,
Option.Yes.ToString())) ;s
return
GetCurrentCoordinates () ;

Challenges

Avoiding double-prompts
Sticky prompts
Avoiding weaker prompts

Minimizing prompting

A N

Avoiding prompts in
background tasks

6. Avoiding prompts in
libraries

3 party.dI| f 6

Valid Placement

Definition @ We say that placement P C N 1s a
valid placement for a prompt placement problem P =
(N, A, B, E,C, L) if the following conditions hold for
every runtime execution of the app:

é Y
e Safe: FEvery access to resource r € R is preceded

. by a prompt check for r.)

~

e Visible: No prompt is located within a back-
ground task or a library.

\, — — - _J
(e Frugal: Prompt for r € R is never invoked)
unless it is either followed by a call to get(r)
__or an_exception_occurs-. y

(" e Not-repetitive: Prompt for permission ro €
R is never invoked if permissions for ry € R
have already been granted and ro T ry (that
is, r1 is at least as or more permissive than rs).

J

Intuition for Placement

1. Start with a resource access

2. “Move” the prompts up until we
are outside of background tasks

- Downside:

- possible to move these prompts too
far (to the beginning of the app in
the most extreme case)

 This would violate the frugal
requirement.

 This gives rise to a notion of a
prompt being needed at a particular
point, for which we use the term
anticipating

getLocation()

|

Dominator-Based Approach
<D

getLocation()

Not frugal!

Backward Placement
G

getLocation()

- B
Analysis Steps

1. For every resource access type and every node n, pre-
compute r-anticipated value A(n)

2. Merge values by meeting them in the semi-lattice of resource
types

A(M) = A An)

3. Forevery

adequately protected ' strategy successful? placement strategy

Check if access is o }| Dominator-based | no— Try backward

EVALUATION

Input Statistics

apps analyzed 100
app size 7.3MB
processed methods 352,816 | 3.5K onaverage
background/library methods 26,033 7%
library methods 25,898 7%
nodes 1,333,056
anticipating 171,253 12%
accesses 227 | 2 perapp
accesses in background/library methods 78 1/3d

Benchmarks

- Took 100 WP 7 apps

- To make this meaningful, Component Count
: SOMAWP7 42

chose apps with LOCATION NetDragon.PandaReader 13
and NETWORKING caps EchoEchoBackgroundAgent 10
Utilities 10

BMSApp 10

_ MobFox.Ads.LocationAware 8

* An average app is 7.3 MB XIMAD_Ad_Client 7
EchoEcho 5

of code DirectRemote 5
DCMetroApp 5

- Uses third-party ad libraries

Prompt Placement Success

Total Unique

Failed Failed
9% 5%

Succeeded Succeeded
91% 95%

Dominator-Based vs. Backward

- When dominator-based
placement succeeds, it is
usually immediate

Dominator

Backward 3% .
- Backward placement is

helpful for cases where
dominator-based
placement fails

- However, some of these
cases are still too hard,
leading to 7 unique failures

ssadoe Jad ‘piemydeq

1,366

ikl
19d ‘paseq-soleuiwiop

dde Jad ‘uonasul dwoud

942

sydwoud Suissiw guipuly

123

uoneindwod 3unjedidniue

158

uo132NJISU0d
ydes3 juawadeld

15,103

uol31onJ3suod ydeus ||ea

18,152

3uipeo| dde

iming

T

100000

10000
1000
100

10

1
0.1
0.01

IVIanual Examination

- Picked 10 apps with 27 - False negatives: resource
resource accesses access we think is protected
whereas in fact at runtime it

- Manually exercised as much has no preceding prompts

functionality as possible
« Out of 27 accesses our
analysis reports 10 as

- Verification includes running unprotected

these apps in an emulator to
collect network packets and
API calls - No false negatives observed:
analysis correctly identifies
them as unprotected and
finds proper prompt
placements

False Positives

- False positives: analysis - Qur analysis errs on the safe side,
classifies a resource access as introducing false positives and not
unprotected whereas it is false negatives

properly protected at runtime

- False positives may lead to double-

- 11 out of 21 accesses found prompting

as unprotected turn out to be
false positives

- Inserted prompts are sticky, so at
most one extra runtime prompt

per app
- Easy to spot and suppress by app
- Reasons include: store maintainers
« Not recognizing sticky prompts
* Custom consent dialogs - Interesting future research

« Async calls and XAML

Conclusions

- Explored the problem of missing | < Overall, our two-prong

prompts that should guard strategy of dominator-based
sensitive resource accesses and backward placement
succeeds in
- Graph-theoretic algorithm for - about 95% of all unique cases
placing prompts - highly scalable: analysis usually

takes under a second on average

- Approach that balances
execution speed and few - Suggests that fully-automatic
prompts inserted via dominator- prompt placement is viable
based placement with a
comprehensive nature of a more
exhaustive backward analysis

