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PERMISSIONS IN 
MOBILE APPS
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Permissions Flavors
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installation-time 
permissions

runtime 
permissions

Permissions

Allow access 
to GPS location?



Examples of Permissions in Different 

Mobile Operating Systems
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installation-time 
permissions

runtime 
permissions



General Guidelines
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Best Practices for Mobile Application Developers
Center for Democracy & Technology



Guarding Location Access

• Focus on 3 representative applications in the 
Windows Phone store
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App
Resource
Accesses APIs used DLLs using location

AroundMe 2 TryStart, getPosition AroundMe.dll

Burger King 5 Start, getPosition BurgerKing.dll,
GART.dll

LumiaClock 2 Start, getPosition SOMAWP7.dll

%z



AroundMe
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public static bool AroundMe.App.CheckOptin() {
if (((Option)Enum.Parse(typeof(Option),Config.GetSetting
(SettingConstants.UseMyLocation),true)) == Option.Yes
return GetCurrentCoordinates();
}
if (MessageBox.Show("This app needs ...",

"Use location data?", MessageBoxButton.OKCancel
== MessageBoxResult.OK) 

{
Config.UpdateSetting(new KeyValuePair<string,string
(SettingConstants.UseMyLocation,Option.Yes.ToString

return GetCurrentCoordinates();
}
...
}

check

prompt

save

access



Burger King
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public BurgerKing.View.MapPage() {
this.InitializeComponent();
base.DataContext = new MapViewModel();
this.BuildApplicationBar();
if (AppSettings.Current.UseLocationService){
this.watcher = new GeoCoordinateWatcher();
}
..
}

protected virtual void GART.Controls.ARDisplay.
OnLocationEnabledChanged(

DependencyPropertyChangedEventArgs e)
{
if (this.servicesRunning) {
if (this.LocationEnabled) {
this.StartLocation();

…

application code

library code



LumiaClock
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public SomaAd()
{
...
this._locationUseOK = true;
...
if (this._locationUseOK) {
this.watcher = new GeoCoordinateWatcher
(GeoPositionAccuracy.Default);
this.watcher.MovementThreshold = 20.0;
this.watcher.StatusChanged += 
new EventHandler

<GeoPositionStatusChangedEventArgs>(
this.watcher_StatusChanged);

this.watcher.Start();
}
}

library:
just do it!



Where Does that Leave Us?

• Properly protecting 
location access is 
challenging

• Location access is 
common

• Some location-related code 
is in the app

• A lot of location access in 
third-party libraries

• Location choices are 
sometimes ignored

• Third-party libraries such 
as ad libraries sometimes 
expose flags for enabling 
location access but those 
are frequently ignored by 
developers
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• Study how existing 
applications 
implement resource 
access prompts on a 
set of Windows Phone 
applications

Contributions



• Formulate a problem of 
valid prompt placement 
in graph-theoretic terms

• Propose a static analysis 
algorithm for correct 
resource access prompt 
placement

Static analysis
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• We evaluate our approach to both 
locating missing prompts and 
placing them when they are missing 
on 100 apps

• Overall, our two-prong strategy of 
dominator-based and backward 
placement succeeds in about 95%
of all unique cases

• Our analyses run in seconds, 
making it possible to run them as 
part of the app submission process

Evaluation



ANALYSIS APPROACH 
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In This Paper…

• We focus on a completely 
automatic way to insert 
missing prompts

• Our approach is static: we 
want to be able to check 
for missing prompts and 
insert compensating code 
even if we cannot hit it at 
through runtime testing

• Graph-theoretic approach
• Represent the application 

statically as a graph
• An inter-procedural version of 

control flow graph (CFG)
• Reason about prompt 

placement in graph-theoretic 
terms

• Not information flow
• A lot of work on finding 

undesirable information flows
• We reason about control flow 

not data flow
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Challenges

1. Avoiding double-prompts

2. Sticky prompts

3. Avoiding weaker prompts

4. Minimizing prompting

5. Avoiding prompts in 
background tasks

6. Avoiding prompts in 
libraries

if(P) l1 = getLocation();

l2 = getLocation();
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flag = true;

if(P){

prompt();

flag = true;

l1 = getLocation();

}

if(!flag){

prompt();

l2 = getLocation();

}

if(P){

prompt();

l1 = getLocation();

l2 = getLocation();

}else{

prompt();

l2 = getLocation();

}



Challenges
1. Avoiding double-prompts

2. Sticky prompts

3. Avoiding weaker prompts

4. Minimizing prompting

5. Avoiding prompts in 
background tasks

6. Avoiding prompts in 
libraries
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if (MessageBox.Show(

"This app needs to know your location

in order to find locations

around you, can it use your location data?

note: you can change the settings later

through the settings menu",

"Use location data? ", 1) == 1)

{

Config.UpdateSetting(

new KeyValuePair<string, string>(

SettingConstants.UseMyLocation,

Option.Yes.ToString()));

return

GetCurrentCoordinates();

}



Challenges
1. Avoiding double-prompts

2. Sticky prompts

3. Avoiding weaker prompts

4. Minimizing prompting

5. Avoiding prompts in 
background tasks

6. Avoiding prompts in 
libraries
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3rd party.dll



Valid Placement
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Intuition for Placement

1. Start with a resource access

2. “Move” the prompts up until we 
are outside of background tasks 

• Downside: 
• possible to move these prompts too 

far (to the beginning of the app in 
the most extreme case)

• This would violate the frugal
requirement. 

• This gives rise to a notion of a 
prompt being needed at a particular 
point, for which we use the term 
anticipating
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5 getLocation()



Dominator-Based Approach
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1

Not frugal!

5

5 getLocation()



Backward Placement
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5 5

2

Slower

4

getLocation()



Analysis Steps
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1. For every resource access type and every node n, pre-
compute r-anticipated value Ar(n)

2. Merge values by meeting them in the semi-lattice of resource 
types 

A(n) = ᴧ Ar(n)

3. For every 



EVALUATION
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Input Statistics

apps analyzed
app size

100
7.3MB

processed methods 352,816 3.5K on average
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background/library methods 26,033 7%

library methods 25,898 7%

nodes 1,333,056

anticipating 171,253 12%

accesses 227 2 per app

accesses in background/library methods 78 1/3rd



Benchmarks
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• Took 100 WP 7 apps

• To make this meaningful, 
chose apps with LOCATION
and NETWORKING caps

• An average app is 7.3 MB 
of code

• Uses third-party ad libraries



Prompt Placement Success

Succeeded
91%

Failed
9%

Total

27

Succeeded
95%

Failed
5%

Unique



Dominator-Based vs. Backward 

Dominator
3%

Naïve
70%

Backward
27%

• When dominator-based 
placement succeeds, it is 
usually immediate

• Backward placement is 
helpful for cases where 
dominator-based 
placement fails

• However, some of these 
cases are still too hard, 
leading to 7 unique failures
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Timing
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Manual Examination

• Picked 10 apps with 27 
resource accesses

• Manually exercised as much 
functionality as possible 

• Verification includes running 
these apps in an emulator to 
collect network packets and 
API calls 

• False negatives: resource 
access we think is protected 
whereas in fact at runtime it 
has no preceding prompts

• Out of 27 accesses our 
analysis reports 10 as 
unprotected

• No false negatives observed: 
analysis correctly identifies
them as unprotected and 
finds proper prompt 
placements

30



False Positives

• False positives: analysis 
classifies a resource access as 
unprotected whereas it is 
properly protected at runtime 

• 11 out of 21 accesses found 
as unprotected turn out to be 
false positives

• Reasons include:
• Not recognizing sticky prompts

• Custom consent dialogs

• Async calls and XAML
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• Our analysis errs on the safe side, 
introducing false positives and not 
false negatives

• False positives may lead to double-
prompting

• Inserted prompts are sticky, so at 
most one extra runtime prompt 
per app 

• Easy to spot and suppress by app 
store maintainers

• Interesting future research



Conclusions
• Explored the problem of missing 

prompts that should guard 
sensitive resource accesses

• Graph-theoretic algorithm for 
placing prompts

• Approach that balances 
execution speed and few 
prompts inserted via dominator-
based placement with a 
comprehensive nature of a more 
exhaustive backward analysis

• Overall, our two-prong 
strategy of dominator-based 
and backward placement 
succeeds in
• about 95% of all unique cases 

• highly scalable: analysis usually 
takes under a second on average

• Suggests that fully-automatic 
prompt placement is viable
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